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The Large Hadron Collider (LHC)

p p

√s≈14 TeV

Circumference: 16.5 miles
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LHC in the Bay

LHC
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LHC Accelerator

April 26th 2007

• 30,000 tons of 8.4T dipole
magnets

• Cooled to 1.9K with 90 tons of
liquid helium

• Energy of beam = 362 MJ
– Kinetic energy of 15 ton truck at

500 mph
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Luminosity

• Single most important quantity
– Drives our ability to detect new processes

– Rate of physics processes per unit time directly
related:

L=L= ffrevrev n nbunchbunch  NNpp
22

AA

revolving frequency: frev=11254/s
#bunches: nbunch=2835
#protons / bunch: Np= 1011

Area of beams: A~40 µm

NNobsobs= = ∫∫LdtLdt  ··  εε  ··  σσ Cross section Cross section σσ::
Given by Nature Given by Nature 

(theorists)(theorists)

Ability to find something depends on Ability to find something depends on NNobsobs

Efficiency:Efficiency:
optimized byoptimized by

experimentalistexperimentalist
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What Do We Hope to find at LHC?
• Answers to very fundamental and simple questions:

– Why do electrons have mass?
• Possible answer: The Higgs boson

– Why is gravity so weak?
• Possible answer: supersymmetric particles

• NB: This planet (and we!) would not exist if it was otherwise



7

~0

1
10,000

~1910

1
10

~1940

1
100,000

~1970-now

atom

nucleus

We learned a lot in the last century

LHC

1
10

?
10-13 cm10-8 cm 10-12 cm

10-17 cm



8

top quark

anti-top quark

.     .     .     .
νe  νµ  ντ  e- µ−   τ−     u  d   s    c      b 

 Elementary Particles: Matter

νe  νµ  ντ  e+ µ+   τ+     u  d   s    c      b-   -   -                       -   -   -     -       -

(Mass proportional to area shown but all sizes still < 10-19 m)

Why are there so many leptons and quarks?
And, why do they all have different masses?



9

Origin of Mass

Nothing in the universe Something in the universe

Higgs Particles interact with other particles the stronger
the more massive they are:
- distance ~10-17 cm   => will be found at LHC!

x
x

xx x
xx

x

Electron

Photon

Top Quark

m=5.11 10m=5.11 1055  eVeV/c/c22

m=0m=0

m=1.72 10m=1.72 101111  eVeV/c/c22
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Why is Gravity so weak compared
to the other forces?
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 ZW+, W-

 Elementary Particles: Force Carriers

gluons

electromagnetic weak strong

electroweak

Grand Unified force ?

graviton

gravity

Theory of Everything ?

photon: γ
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The “finetuning problem”

• Why is gravity is so much weaker than the
weak force?
– Newton: GN=6.67 x 10-11 m3kg/s2 ~10-38 GeV-2

– Fermi: GF=1.17 x 10-5 GeV-2

• Or why is the W boson mass so small?
– Weak scale: MW ~1/Mweak=1/√GF = 3x102 GeV
– Natural scale: MPlanck=1/√GN~1019 GeV

⇒“Finetuning” required to make Higgs mass small
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Finetuning Problem

• Free parameter m2
H

tree “finetuned” to cancel huge
corrections dm so that

     200 GeV=1000000000000000200 GeV-1000000000000000000 GeV

• Isn’t that Crazy!?!
– Some unknown ad-hoc parameter introduced with superb

precision
• We were very lucky it worked out like this!

– Like finding a pen on a table like this

m2
H ≈ (200 GeV)2 = m2

H
tree + δ m2

H
top + δ m2

H
gauge + δ m2

H
higgs

Seems wrong somehow
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Solving the finetuning problem
• Add new particles

– New loops cancel old loops!
• Size of loops naturally the same

– No hugely tuned ad-hoc
parameter needed

• “Supersymmetric” particles
– Each standard model particle

has a partner, e.g.:
• Electron => Selectron
• Quark => Squark
• Photon => Photino
• W boson => Wino

Superpartners! 



15

Already happened in History!

• Might also seem crazy to have another set of
particles introduced to solve aesthetic problem

• Analogy in electromagnetism:
– Free electron has Coulomb field:
– Mass receives corrections due to Coulomb field:

• me
2=me

2+EC/c2

• With re<10-17 cm:
– Solution: the positron!

Problem was not as bad as today’s but it resulted
in new particle species: anti-particles

<<1
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More virtues of Supersymmetry (SUSY)
• Electromagnetic, strong and

weak force unify!
– Miss unification in SM (barely)
– Exactly unify in SUSY!

• Includes candidate for dark
matter with 0.1-1 TeV mass
– Cosmology data point to such a

particle
– May contribute most of the

Dark Matter in Universe
• 5 times more than ordinary

matter

If SUSY particles are solution to hierarchy problem
they will be found at the LHC
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The Challenge

• Measured hits in detector
• => use hits to reconstruct particle paths and energies
• => estimate background processes
• => understand the underlying physics

Higgs

Supersymmetry
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Particle Identification
• Detector designed to separate electrons, photons,

muons, neutral and charged hadrons
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ATLAS and CMS Detectors

152112,500CMS
22427,000ATLAS

Height
(m)

Length
(m)

Weight
(tons)
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ATLAS and CMS in Berlin

ATLAS

CMS
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Detector Mass in Perspective

CMS is 30% heavier than the Eiffel tower

CMS

Eiffel
tower
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ATLAS Detector in Construction (2005)
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Detailed Layout

• About 100 million separate readout channels
– 3000 km of cables
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Silicon Tracking Detectors
• Charged particle traverses silicon

sensor (semi-conductor)
– Sets free charge carriers

• Drift to electrodes
• Measured charge gets collected at

electrodes
– Thus we find out position of particle

• Resolution typically 15 µm

• Detector placed inside magnetic
field:
– Lorentz force: F = q v x B

• Hits along trajectory are fit to form a
track
– deviation from straight line proportional

to momentum (p=mv)
– Direction of curvature tells us the

electric charge

charged
particle

low p

high p
+

–

h+ e-

..BB
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The ATLAS Pixel Detector

• Cylinder: L=1.4 m , R=12.25 cm
• 80,000,000 individual pixels arranged in modules:

– 16 chips per module, 2880 pixels per chip => 46080 pixels/module
– Distance between pixels: 50 µm (“pitch”)

• Designed and built mostly in the United States (Berkeley)

2 cm
6 cm

module
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Tracking Detectors
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Electromagnetic Calorimeter

• Sandwich structure:
– Absorber material: lead (Pb)
– Active material: Liquid Argon (LAr)

• Energy measurement:
– Electromagnetic shower produced

through interactions with lead
– Photons collected in Liquid Argon
– N(photons)∝ energy of particle
– Photomultiplier tube (“PMT”)

• Amplification of signal => readout

• Position measurement:
– High spatial granularity =>  position

known

e or γ

Pb

LAr

PMTPMT
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Muon Systems and Calorimeters
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Cosmic Muon Data

Experiments are currently
preparing for LHC data taking
- analysis of cosmic muon data
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2000 Physicists from all over the World

 (including 400 PhD students)
+ many technician and engineers
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Enormous Data Volumes
• Pushing the computing limits!

– 1 second of LHC data: 1000 GigaBytes
• 10,000 sets of the Encyclopedia Britannica

– 1 year of of LHC data: 10,000,000 GB
• 25 km tower of CD’s (~2 x earth diameter)

– 10 years of LHC data:
• All the words spoken by humankind since

its appearance on earth

• Solution: the “Grid”
– Global distribution of CPU power

• More than 100 CPU farms worldwide share
computing power



32

Three Example Analyses
Finding the Higgs boson:
-with photons
-with Z-bosons

Finding a Supersymmetric
World
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Rates of Processes
• Everything happens probabilistically

• And competing “background processes” that can be large
– Key experimental work is to suppress/reduce and understand them

8 / dayH→γγ
<1 / minSUSY

1 / secTop quark
10 / secW→eν

600 million / secany
RateProcess
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Finding the Higgs Boson (with photons)
• Find 2 high energy

photons
– If M(H)<130 GeV/c2

• Separate signal from
backgrounds
– Backgrounds can

look exactly the
same

– but for γ’s from Higgs:
M(H)=M(γγ)=√[(E1+E2)2-(p1+p2)2] M(γγ)

background

Higgs →γγ
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Finding the Higgs Boson (with Z’s)
• Find 4 high energy

muons or electrons
– If M(H)>130 GeV/c2

• Separate signal from
backgrounds
– Again calculating the

invariant mass
– Backgrounds much

smaller than in
diphoton case:

• Easier!

Higgs signal

simulated event

Background

Z

Z

µµ++
µµ--

µµ++
µµ--

µ
µ

µµ

M(eeee)
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Finding a Supersymmetric World

• Supersymmetric particles decay
into ordinary particles:
– Measure decay products
– Dark matter particle (χ1

0) escapes
detector unseen:
• Momentum balance tell us presence of

dark matter particles (“missing ET”)

• Search strategy:
– Search for many high energy particles

plus large missing ET

Might find the missing Dark Matter in the Universe

~

~ ∑iET
i+missing ET

SUSY

background

~
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When ? LHC Schedule

• Accelerator cooling down to 2.7 K (by end of May)
• 1st beams in June 2008
• 1st collisions in August/September (at ~10 TeV)
• 1st physics results hopefully next year
• 1st discoveries in 2009/2010?



38

• After a 20 year design and
construction phase the
LHC experiments are
taking data!
– Cosmic muons now
– pp collisions later this year

• Biggest experiment ever
built
– >2000 physicists collaborate

on each experiment towards
a common goal

– Unraveling the physics of the
fundamental building blocks
of matter

Conclusions
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Further Information

• CERN: http://public.web.cern.ch
• Particle Physics: http://particleadventure.org
• Experiments:

– ATLAS: http://www.atlas.ch
– CMS: http://cmsinfo.cern.ch/outreach/
(including many movies)


